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Abstract

The factual value of genome-wide association studies (GWAS) for the understanding of multifactorial diseases is a matter of
intense debate. Practical consequences for the development of more effective therapies do not seem to be around the
corner. Here we propose a pragmatic and objective evaluation of how much new biology is arising from these studies, with
particular attention to the information that can help prioritize therapeutic targets. We chose multiple sclerosis (MS) as a
paradigm disease and assumed that, in pre-GWAS candidate-gene studies, the knowledge behind the choice of each gene
reflected the understanding of the disease prior to the advent of GWAS. Importantly, this knowledge was based mainly on
non-genetic, phenotypic grounds. We performed single-gene and pathway-oriented comparisons of old and new
knowledge in MS by confronting an unbiased list of candidate genes in pre-GWAS association studies with those genes
exceeding the genome-wide significance threshold in GWAS published from 2007 on. At the single gene level, the majority
(94 out of 125) of GWAS-discovered variants had never been contemplated as plausible candidates in pre-GWAS association
studies. The 31 genes that were present in both pre- and post-GWAS lists may be of particular interest in that they represent
disease-associated variants whose pathogenetic relevance is supported at the phenotypic level (i.e. the phenotypic
information that steered their selection as candidate genes in pre-GWAS association studies). As such they represent
attractive therapeutic targets. Interestingly, our analysis shows that some of these variants are targets of pharmacologically
active compounds, including drugs that are already registered for human use. Compared with the above single-gene
analysis, at the pathway level GWAS results appear more coherent with previous knowledge, reinforcing some of the current
views on MS pathogenesis and related therapeutic research. This study presents a pragmatic approach that helps interpret
and exploit GWAS knowledge.
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Introduction

Genome-wide association screenings (GWAS) and, in a

relatively near future, full-genome sequencing of large samples

will substantially deepen our understanding of the etiology of

multifactorial diseases, bringing new hope for the identification of

definitive therapeutic targets. However, in spite of the spectacular

technological progress that is making this happen, difficulties in the

analysis and interpretation of the data are delaying the process [1].

Since the entity of this delay is unpredictable, it would be useful to

look at the available data in a way that may help to set priorities in

certain fields of clinical research.

An obvious strategy to assess the added value of the new

knowledge that is being acquired is to confront it with the old one.

Although successfully accomplished in other areas of bioinfor-

matics [2,3], this knowledge integration process has never been

systematically and objectively attempted for GWAS data since the

vast majority of genetic studies in the pre-GWAS era did not

provide definitive evidence of associations, hence being non

comparable. Nonetheless, being the bulk of the old studies based

on a candidate-gene approach, irrespective of the reliability of

their results the knowledge behind the choice of each gene is a

faithful and thorough representation of pre-GWAS understanding

of the disease.

We evaluated differences between pre- and post-GWAS

knowledge in multiple sclerosis (MS). As first term of comparison,

representing the pre-GWAS knowledge, we used an unbiased list

of those candidate genes (included in GENOTATOR) [4] that

had been considered appropriate choices for genetic studies based

on pre-GWAS candidate-gene approach; as second term, we
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selected those genes exceeding the genome-wide significance

threshold in GWAS published from 2007 on.

Based on the results of this analysis, performed in a single-gene

and in a pathway-oriented approach, we evaluated the emergence

of ‘‘black swans’’ from the GWAS data and the instances in which

the old and the new knowledge reinforce each other. Importantly,

such cases highlighted a potential coincidence between significant

genetic variants and (endo)phenotypes of possible pathogenetic

relevance, a particularly informative situation in that it tells us that

the genetic association identified by GWAS may be coupled with

pathogenetically relevant phenotypic variation. Being these

variants attractive for pharmaceutical research, we also performed

a survey of drugs that target the products of these genes including

compounds that are already registered for human use and may be

evaluated in proof-of concept clinical trials without further delay.

Methods

To compare pre-GWAS knowledge with GWAS results we used

two independent lists of genes. The first one, that we assume to be

representative of pre-GWAS knowledge, contains all genes chosen

as ‘‘candidate genes’’ for association studies in MS in the pre-

GWAS era (all the studies included in GENOTATOR database

and published up to august 2007). We obtained this list from the

GENOTATOR meta-database [4] (http://GENOTATOR.hms.

harvard.edu ). The second list is made of the genes that are

reported as exceeding the threshold of genome-wide significance

in the 15 GWAS published since 2007 on MS [5–19] (http://

www.genome.gov/gwastudies/).

We compared the single gene composition of the two lists and

then verified whether variations resulted in functional differences

using Ingenuity Pathway Analysis (IPA). IPA settings included (1)

strict experimentally-validated filter in the setting related to source

data quality, (2) inclusion of information coming only from papers

where tissues and cells belong to the following IPA categories:

immune system, nervous system, and cell lines; (3) use only

human-data and discard mouse and rat model data. Statistical

significance was taken at p,0.05 (ie, -log(p). = 1.3); B–H p-values

denote p-values corrected for multiple testing using the Benjamini-

Hochberg procedure (this technique relies on the fact that p-values

are uniformly distributed under the null hypothesis) [20].

In IPA, the p-value associated with a function or a pathway in

Global Functional Analysis (GFA) and Global Canonical Pathways

(GCP) is a measure of the likelihood that the association between a

set of focus genes in the experiment and a given process or

pathway is due to random chance. The p-value is calculated using

the right-tailed Fisher Exact Test. B–H correction method of

accounting for multiple testing is used in this analysis, and enabled

to control the error rate in our results and focused on the most

significant biological functions associated with our genes of

interest. A full mathematical and statistical explanation of the

IPA procedure is available at http://www.ingenuity.com/wp-

content/themes/ingenuitytheme/pdf/ipa/functions-pathways-

pval-whitepaper.pdf.

Finally, we used the IPA software to find out all the molecules

(pharmacologically active substances included) that directly or

indirectly (connection mediated by a common interactor) interact

with the products of the genes that compose our GENOTATOR

and GWAS lists.

The diagram in Figure 1 summarizes the methodology we

designed and followed for our work of knowledge assessment and

comparison.

Results

Our analysis included 522 genes from GENOTATOR and 125

from GWAS, selected according to the parameters described in

the Methods section (see also the diagram in Figure 1 for a

snapshot of the study design). The GENOTATOR-derived panel

can be taken as an unbiased representation of pre-GWAS,

‘‘phenotypic’’ knowledge (the conceptual background behind the

choice of each ‘‘candidate’’ was mainly based on non-genetic

information). The GWAS-derived panel reflects new information

on the genetic variation that influences disease risk. The two

panels were then confronted at the single-gene and at the pathway

level.

As shown in Fig. 2-A (and Table S1), at the single-gene level 31

genes upon the whole (647) could simultaneously be found in both

GENOTATOR and GWAS lists, 491 were exclusive of the

GENOTATOR list and 94 were exclusive of the GWAS list. This

implies that 75.2% (94 out of 125) of the GWAS-discovered genes

had never been considered as plausible candidates for single-gene

association studies in MS. On the other hand the remaining 24.8%

(31 out of 125) of the GWAS-identified genes confirm previous,

phenotypic-derived knowledge.

Genes in the GENOTATOR and GWAS lists were then

subjected to a pathway-oriented analysis in order to have a glance

of the molecular and cellular functions associated to each test set.

The Ingenuity analysis addressed the broader perspective of

‘‘biological function’’ first and then focused on ‘‘signaling

pathways’’ and ‘‘metabolic pathways’’ (the only two categories

contained in IPA canonical pathways) to obtain separate insight

about specific cellular functions.

The ‘‘biological function’’ IPA showed a major overlap between

the pre- (GENOTATOR data set) and post-GWAS knowledge

(GWAS data set) (Fig. 2-B, Table S2 and Figure S1). In particular,

GENOTATOR and GWAS data sets shared 20 out of 25

biological pathways. Of the 5 pathways that were exclusive of

either data set, amino acid metabolism and protein trafficking

emerged from GWAS data, whereas free radical scavenging,

protein synthesis, nucleic acid metabolism emerged from GENO-

TATOR.

Comparison carried out at the signaling pathway level (Fig. 2-C,

Table S3) showed a smaller overlap between the two data sets, as

GENOTATOR and GWAS shared 80 pathways out of 215

(37.2%). Notably, in this case there was a considerable portion of

pathways (135 upon the whole) emerging uniquely from

GENOTATOR data.

The proportion of GENOTATOR pathways that were not

confirmed in GWAS became preponderant in the ‘‘metabolic

pathways’’ IPA, where no pathways were present in both GWAS

and pre-GWAS lists of metabolic pathways (Fig. 2-D and Table

S4).

To extract information that may steer the identification of

‘‘druggable’’ targets, we used the IPA software to find out all the

molecules directly or indirectly interacting with the products of the

genes in the GENOTATOR and GWAS lists. Among these, we

focused our attention on those molecules (being either the original

gene products or the associated proteins linked to them) that were

targeted by registered drugs or by pharmacologically active

(exogenous or endogenous) compounds and found that 9 (CD40,

CD80, CD86, ESR1, HLA-DRB1, IL6, IL7R, IL12B, IL13) were

genes present in both GWAS and GENOTATOR lists. Results of

this analysis and the most significant networks, together with the

related drugs, are described in Fig. 3 (and Table S5).

Contribution of GWAS to Scientific Research
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Figure 1. Study flow diagram. It summarizes of the methodology we designed and followed to compare the pre- and post-GWAS understanding
of the disease by means of single gene analyses, pathway comparisons, and drug target evaluations.
doi:10.1371/journal.pone.0071198.g001

Figure 2. Comparison of GENOTATOR and GWAS gene lists. (A) results at the single-gene level; (B) results in terms of biological function
derived from IPA analysis. Boxes describe specific biological functions; (C) signaling pathway comparison, resulting from IPA analysis; (D) comparison
performed in terms of metabolic pathways, derived from IPA analysis. Box indicates ‘‘GENOTATOR-only’’ signaling pathways.
doi:10.1371/journal.pone.0071198.g002
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Discussion

In principle, GWAS results are one of the best resources we can

draw on for the development of new therapies in multifactorial

diseases. Unfortunately their interpretation is neither simple nor

granted [1]. Furthermore, the small effect size of the disease-

associated variants discovered so far does not lend them to be

considered as attractive therapeutic targets. However, the true

pathogenetic role of these variants may erroneously appear

limited, in the absence of comprehensive analyses of how this

disease-relevant genetic variation correlates with functional/

phenotypic knowledge. To provide conceptual support to the

new information we confronted GWAS results with pre-GWAS,

functional/phenotypic knowledge.

This comparison confirms, objectively, that GWAS are indeed

broadening and refining our understanding of the genetic

architecture of MS. The majority of the genes identified in

GWAS are new with respect to those in the GENOTATOR list of

pre-GWAS studies. Looking at the pathway-oriented analysis, in

some instances (which were more frequent among ‘‘biological

function’’, less frequent among ‘‘signaling’’ and absent among

‘‘metabolic’’ pathways), the new knowledge strengthens hypothe-

ses that had guided the selection of candidates for single-gene

association analyses prior to the advent of GWAS; in others there

are elements of novelty. Specifically, there are 2 biological

pathways (amino acid metabolism and protein trafficking) that

emerge only from GWAS data (according to IPA’s classification

for bio- and canonical-pathways assessing the trajectory of a given

knowledge dataset). Finally, the lack of overlap between

GENOTATOR and GWAS knowledge at the ‘‘metabolic’’ IPA

level may suggest a substantial denial of previous conjectures about

the involvement of metabolic functions. Although this knowledge

trajectory assessment contains, obviously, a publication bias

(indeed, IPA’s knowledge repository is updated periodically with

data coming from PubMed, KEGG, Gene Expression Omnibus,

and all major scientific data repositories), our analysis can be

repeated, for instance, every year, to update the trajectory where

the GWAS research is overall headed.

The 31 genes that GWAS results have in common with pre-

GWAS knowledge are of particular interest. In fact, in the pre-

GWAS era, they had been selected based on non-genetic,

phenotypic grounds. Therefore, functional information on the

underlying biological processes is, to some extent, already available

and, at least in some of these cases, they may represent bona-fide

functional (endo)phenotypes [21,22] whose pathogenetic relevance

has been supported already. For these reasons genes such as

CD40, CD5, CD80, CD86, CIITA, CXCR5, FCRL3, GALC,

ICAM3, IL12A, IL12B, IL12RB1, IL6, IL7R, MAPK1, NFKB1,

TNFRSF1A, may be considered foreground therapeutic targets

(see Table S6 for functional information).

Among these, some are targeted by registered drugs and can

therefore be placed even higher in an ideal ranking of interest.

Nonetheless, pathogenetic relevance does not necessarily imply

therapeutic efficacy. Additional parameters need to be taken into

account in choosing the most appropriate therapeutic targets. In

MS, the disappointing results of phase II clinical trials with

Ustekinumab (CNTO 1275, StelaraH), a human monoclonal

antibody targeting the interleukin (IL)-12/23 p40 subunit [23],

may suggest that pleiotropic and redundant mediators of the

immune response such as cytokines, while being pathogenetically

relevant through processes that may last several years, are

impractical targets for single therapies that ought to be effective

in a relatively short time interval. Besides IL-12, and apart from

CTLA4 (one published open-label phase 1 clinical trial of infusions

of CTLA4Ig with positive immunologic effects [24] and one

ongoing phase 2 study), there are no other completed or ongoing

proof-of-concept trials on any of the 9 pathogenetically relevant

molecules that may be targeted by registered drugs. The discussion

of the issues that, if properly addressed, may help remove some

roadblocks and facilitate repurposing trials goes beyond the scope

of this study [25].

Figure 3. Results from the analysis of all the molecules directly or indirectly linked to GENOTATOR/GWAS lists of genes. Histogram
chart (center) shows the absolute number of molecules contemporarily targeted by registered drugs or pharmacologically active compounds and
also part of complex molecular networks involving GENOTATOR-only, GWAS-only, or common genes; (left and right): most significant molecular
networks and related drugs.
doi:10.1371/journal.pone.0071198.g003
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Conclusions
Recent, citation metrics comparisons of pre-GWAS and GWAS

publications have shown that GWAS are strong hypothesis

generators [26]. Here, our comparison of pre-GWAS and GWAS

results proposes a rational approach to the interpretation and

exploitation of invaluable information such as that coming from

GWAS, in MS and in other multifactorial diseases. It promises to

become increasingly helpful as new genetic data and new data

warehouses are available, particularly since it may contribute to

prioritize the selection of therapeutic targets.
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